Petroleum Geology of Iraq

Commercial oil was discovered in the Kirkuk structure in 1927, and since then many oil and gas fields have been discovered. This has caused Iraq to be ranked as one of the leading producing countries of the world. It has proven reserves of 113 BB of oil and 110 TCF of gas from 84 fields.

The Lower Paleozoic and Triassic to Miocene section of the stratigraphic column is the main area of interest in Iraq, having potential and proven reservoir rocks of many ages. There are also great thicknesses of potential source-rocks which were especially well-developed during the Lower Paleozoic and Mesozoic.

The main reservoirs are the Cretaceous carbonates and sandstones in the Mesopotamian Basin, and Tertiary Carbonates in the Zagros Basin. These are sealed either by shales or evaporites. These two basins are dominantly oil-prone, while free gas occurs locally in the Tertiary reservoirs along the eastern margin of the fold belt and in Lowe Paleozoic reservoirs of Western Desert.

The Jurassic Sargelu and Naokelekan Formations represent the main source rock potential for the Mesopotamian Basin and Zagros fold belt. The shales of the Sargelu have TOC that range from 2% to 6% with higher values of up to 20%; while in the TOC of the Naokelekan is from 3-9% and locally reaches 15%. The present HI values range from less than 100 to more than 600 mg HC/g TOC. In the Mesopotamian Basin maturities range from 1.2-1.5% Ro, while in the fold belt it ranges from 0.5-1.9 Ro. Oil generation is connected to the late Cretaceous and reached completion in the late Paleogene.

Structural traps in Mesopotamian Basin are large, broad N-S striking basement-cored anticlines, while NW-trending compressional folds that formed by inversion over extensional faults dominate the fold belt. Trapping forming mechanisms formed in response to reactivation of deep-seated faults and diapiric growth, synorogenic faulting and restricted movements. While in the fold belt traps development involved multiple phases of folding that occurred in the late Cretaceous and was subsequently overprinted by late Cenozoic folding and faulting.

It is this wide distribution of important formations and various geological settings which has made Iraq the prolific oil producing country of the Middle East. It is believed that a large proportion of Iraq hydrocarbon wealth has not, as yet, been discovered and should it arise, any opportunity to undertake further exploration should be looked upon favorably, where there are possibilities of stratigraphic as well as structural traps in many parts of the region.
This new study is a comprehensive report on “Petroleum Geology of Iraq” and is based on the analysis of an extensive database. The report contains a combination of well data, field summaries, the geological / sequence stratigraphy and hydrocarbon habitats and prospective areas of Iraq.

The aim is to provide an up-to-date overview of the petroleum geology of the region relevant to hydrocarbon exploration. The report assesses the various plays and provides a comprehensive database of wells and fields and hydrocarbon exploration potential in the country.

The report is in SIX volumes:

Volume 1: Details of the country geological/structural framework with a new sequence stratigraphy, lithofacies maps, hydrocarbon habitat and potential plays.

Volume 2: Summary data sheets for the 115 oil and gas fields with cross sections and maps.

Volume 3: 69 exploration wells with basic information on each wells, formation thickness with age and general lithology.

Volume 4: 49 wells with composite logs, electric logs with Arabian Plate sequence stratigraphy followed by data sheet on each well includes formation, lithological description with thickness, top and bottom interval, production test, oil and gas shows, and casing interval.

Volume 5: Fields with basic information on each well in the field, include formation thickness and age, general lithology, casing and status of each well.

Volume 6: Bibliography and Geological Abstracts.
TABLE OF CONTENTS FOR VOLUME ONE

The report provides a comprehensive evaluation of the country. It includes on regional geological setting sequence, stratigraphy, lithostratigraphy, structural evolution, geological history and exploration and production history. It then goes on to analyse the factors controlling hydrocarbon generation and entrapment with sections on geochemistry/hydrocarbon character, source rocks, thermal maturity, hydrocarbon migration, reservoirs, seals and traps. Particular trap types illustrated by descriptions of appropriate fields. Production data and a review of the petroleum infrastructure are also incorporated.

The final section is an assessment of the unexplored hydrocarbon potential plays of the country. The report contains numerous text figures and tables as well as accompanying maps, charts and cross sections (including isopach, structure and facies maps).

Abstract

Chapter 1: An Introductory Overview

Chapter 2: Tectonic Evolution
 2.1. Tectonic Setting
 2.2. Tectonic History
 2.3. The Relationship between Tectonism and Depositional Setting
 2.4. Unconformities and/or Non-deposition through Geologic Time
 2.5. Subdivision and Zonation of Main Tectonic Elements
 2.6. The Sable Shelf
 2.6.1. Rutba-Jezira Zone
 2.6.2. Salman Zone
 2.7 The Unstable Shelf
 2.7.1. Mesopotamian Zone
 2.7.2. Zagros Folded Basin (Foothill Zone)
 2.7.3. High Folded Zone
 2.8. Geosynclinal Area
 2.8.1. The External Zone
 2.8.2. The Central Zone
 2.8.3. The Internal Zone

Chapter 3: Sedimentary Cycles and their Depositional Setting
 3.1. Late Infracambrian Cycle
 3.2. Ordovician-Silurian Cycle
 3.3. Devonian-Carboniferous Cycle
 3.4. The Permo-Carboniferous - Middle Triassic Cycle
 3.5. Upper Triassic-Middle Jurassic Cycle
 3.6. Callovian-Middle Berriasian Cycle
 3.7. Late Berriasian-Albian Cycle
 3.8. Cenomanian-Lower Campanian Cycle
 3.9. Upper Campanian-Maastrichtian Cycle
 3.10. Paleocene-Lower Eocene Cycle
3.11. Middle-Upper Eocene Cycle
3.12. Oligocene Cycle
3.13. Lower-Middle Miocene Cycle
3.14. Upper Miocene-Pliocene Cycle

Chapter 4: Stratigraphical Nomenclature of Phanerozoic Rock Units

4.1. Paleozoic Rock Units
 - Khabour Formation
 - Akkas Formation
 - Pirispiki Redbeds Formation
 - Chalki Volcanics
 - Ora Formation
 - Kaista Formation
 - Harur Formation
 - Raha Formation
 - Ga’ara Formation
 - Chia Zairi Formation

4.2. Triassic Rock Units
 - Mirga Mir Formation
 - Beduh Formation
 - Geli Khana Formation
 - Kurra Chine Formation
 - Mulussa Formation
 - Zor Hauran Formation
 - Baluti Formation

4.3. Jurassic Rock Units
 - Ubaid Formation
 - Hussainiyat Formation
 - Amij Formation
 - Butmah Formation
 - Adaiyah Formation
 - Mus Formation
 - Alan Formation
 - Sarki Formation
 - Sehkanian Formation
 - Muhaiwir Formation
 - Sargelu Formation
 - Najmah Formation
 - Gotnia Formation
 - Sagggar Formation
 - Naokelekan Formation
 - Barsarin Formation
 - Karimia Formation
 - Chia Gara Formation
 - Makhul Formation

4.4. Cretaceous Rock Units
 - Sulaiy Formation
 - Zangura Formation
 - Yamama Formation
 - Ratawi Formation
 - Lower Sarmord Formation
 - Garagu Formation
 - Lower Balambo Formation
 - Zubair Formation
- Lower Qamchuqa Formation
- Shuaiba Formation
- Nahr Umr Formation
- Rim Siltstone Formation
- Upper Qamchuqa Formation
- Mauddud Formation
- Upper Sarmord Formation
- Juwan Formation
- Rutba Formation
- M’Sad Formation
- Ahmadi Formation
- Rumaila Formation
- Mishrif Formation
- Dokan Formation
- Upper Balambo Formation
- Kil Formation
- Gulneri Formation
- Khasib Formation
- Tanuma Formation
- Saadi Formation
- Kometan Formation
- Hartha Formation
- Tayarat Formation
- Digma Formation
- Agra Bekhme Formation
- Shiranish Formation
- Tanjero Formation
- Hadiena Formation

4.5. Tertiary Rock Units
- Akashat Formation
- Umm Er Radhuma Formation
- Rus Formation
- Rutga Formation
- Dammam Formation
- Aaliji Formation
- Kolosh Formation
- Sinjar Formation
- Khurmala Formation
- Jaddala Formation
- Avanah Formation
- Pila Spi Formation
- Gercus Formation
- Palani Formation
- Shuran Formation
- Sheikh Alas Formation
- Bajawan Formation
- Baba Formation
- Tarjil Formation
- Anah Formation
- Azkand Formation
- Ibrahim Formation
- Ghar Formation
- Euphrates Formation
- Serikagni Formation
Chapter 5: Sequence Stratigraphy and Maximum Flooding Surfaces
5.1. Introduction
5.2. Ordovician Sequence Stratigraphy
5.3. Silurian Sequence Stratigraphy
5.4. Devonian-Carboniferous Sequence Stratigraphy
5.5. Permian Sequence Stratigraphy
5.6. Triassic Sequence Stratigraphy
5.7. Jurassic Sequence Stratigraphy
5.8. Cretaceous Sequence Stratigraphy
5.9. Paleogene Sequence Stratigraphy
5.10. Neogene Sequence Stratigraphy

Chapter 6: Petroleum Exploration, Legislation and Oilfields Summary
6.1. History of Exploration
6.2. Oil and Gas Seepage
6.3. The relation between Seepages and Tectonic Structure
6.4. Location of Seepages
6.5. Petroleum Legislation
6.6. Crude Oil Transportation and Pipelines Projects
 6.6.1. Kirkuk to Batman Pipeline
 6.6.2. Ipsa-2 Contract Awarded
 6.6.3. Trans Saudi Pipeline
 6.6.4. TMSPE Contract Awarded
 6.6.5. Inter-Iraq Pipelines
6.7. Oil and Gas Fields Summary
 6.7.1. Abu Amud (Rafidain) Field
 6.7.2. Abu Amud East (Rafidain East) Field
 6.7.3. Abu Ghirab Field
 6.7.4. Abu Khaimah Field
 6.7.5. Ahdab Field
 6.7.6. Ain Zalah Field
 6.7.7. Akkas Field
 6.7.8. Alan Field
 6.7.9. Al Gharraf Field
 8.7.10. Al Najmah Field
 6.7.11. Amarah Field
 6.7.12. Badra Field
 6.7.13. Bai Hassan Field
 6.7.14. Balad Field
 6.7.15. Butmah Field
 6.7.16. Buzurgan Field
 6.7.17. Chemchemal Field
6.7.18. Chia Surkh Field
6.7.19. Demir Dagh Field
6.7.20. Dhafriyah Field
6.7.21. Dujaila Field
6.7.22. East Baghdad Field
6.7.23. Falluja (West Baghdad) Field
6.7.24. Gharraf Field
6.7.25. Gillabat Field
6.7.26. Halfayah Field
6.7.27. Hamrin Field
6.7.28. Huwaiza Field
6.7.29. Injanah Field
6.7.30. Jabal Fauqi Field
6.7.31. Jambur Field
6.7.32. Jdaida Field
6.7.33. Jebel Kand Field
6.7.34. Jerishan Field
6.7.35. Khabbaz Field
6.7.36. Khidr Al Maa Field
6.7.37. Kifl Field
6.7.38. Kirkuk Field
6.7.39. Kor Mor (Al Anfal) Field
6.7.40. Luhais Field
6.7.41. Majnoon Field
6.7.42. Mansuriyah Field
6.7.43. Merjan (Abbas) Field
6.7.44. Naft Khaneh Field
6.7.45. Nahr Umr (Bin Umr) Field
6.7.46. Nasiriya Field
6.7.47. Noor Field
6.7.48. Pulkhana Field
6.7.49. Qaiyarah Group Fields (Qaiyarah, Najmah, Jawan and Qasab)
6.7.50. Qumar Field
6.7.51. Qara Chauq Field
6.7.52. Rachi Field
6.7.53. Ratawi Field
6.7.54. Rumaila South and Rumaila North Field
6.7.55. Saddam (Ajil) Field
6.7.56. Safwan Field
6.7.57. Samawa Field
6.7.58. Sassan (Sarjoon) Field
6.7.59. Siba Field
6.7.60. Suba Field
6.7.61. Sufaiyah Field
6.7.62. Taq Taq Field
6.7.63. Tikrit Field
6.7.64. Tuba Field
6.7.65. West Qurna Field
6.7.66. Zubair Field
Chapter 7: Reservoirs and Seals: Characteristics and Types

7.1. Depositional Environments and their Characteristics

7.2. Reservoir Characteristics

7.3. Main Reservoir Rock Units

7.3.1. Khabour Formation (Middle to Late Ordovician).
7.3.2. Akkas Formation (Silurian).
7.3.3. Chia Zairi Formation (Upper Permian).
7.3.4. Kurra Chine Formation (Late Triassic).
7.3.5. Butmah Formation (Lower Liassic).
7.3.6. Adaiyah Formation (Late Liassic).
7.3.7. Mus Formation (Liassic).
7.3.8. Alan Formation (Latest Liassic).
7.3.9. Sargelu Formation (Middle Jurassic).
7.3.10. Gotnia Anhydrite Formation (Callovian-Lower Kimmeridgian).
7.3.11. Najmah Limestone Formation (Callovian-Early Kimmeridgian).
7.3.12. Sulaiy Formation (Portiandian-Middle Berriasian).
7.3.13. Yamama Formation (Valanginian).
7.3.14. Chia Gara Formation (Middle Portlandian-Berriasian).
7.3.15. Ratawi Formation (Valanginian-Hauterivian).
7.3.16. Zubair Formation (Hauterivian to Early Aptian).
7.3.17. Garagu Formation (Berriasian-Valanginian).
7.3.18. Sarmord Formation (Valanginian-Aptian).
7.3.19. Shuaiba Formation (Aptian).
7.3.20. Lower Qamchuqa Limestone Formation (Aptian).
7.3.22. Jawan Formation (Albian).
7.3.23. Mauddud Formation (Albian).
7.3.24. Upper Qamchuqa Formation (Albian).
7.3.25. Ahmadi Formation (Lower Cenomanian).
7.3.26. Rumaila Formation (Cenomanian).
7.3.27. Mishrif Formation (middle to late Cenomanian).
7.3.28. Dokan Limestone Formation (Cenomanian).
7.3.29. Upper Balambo Formation (Cenomanian-Turonian).
7.3.31. Mushorah Formation (Lower Senonian-Lower Campanian).
7.3.32. Khasib Formation (late Turonian-Coniacian).
7.3.33. Tanuma Formation (upper Senonian).
7.3.34. Sa'di Formation (upper Senonian).
7.3.35. Hartha Formation (Upper Campanian-Lower Maastrichtian).
7.3.36. Shiranish Formation (Upper Campanian-Maastrichtian).
7.3.37. Aali Ji Formation (upper Paleocene-lower Eocene).
7.3.38. Jaddala Formation (late lower Eocene to Upper Eocene).
7.3.39. Pila Spi Limestone Formation (Middle-Upper Eocene).
7.3.40. Avanah Formation (Middle-Upper Eocene).
7.3.41. Dammam Formation (middle-upper Eocene).
7.3.42. Kirkuk Group.
7.3.43. Kalhur Formation (Lower Miocene).
7.3.44. Asmari Formation (Lower Oligocene-Lower Miocene).
7.3.45. Serikagni Formation (Lower Miocene).
7.3.46. Ghar Formation (Early Miocene).
7.3.47. Euphrates Limestone Formation (Lower Miocene).
7.3.48. Jeribe Limestone Formation (Middle Miocene).
7.3.49. Lower Fars Formation (Middle Miocene).
7.3.50. Upper Fars Formation (Upper Miocene).

7.4. Seals and Seal Formation

7.5. Main Seal (Cap) Rock Units
 7.5.1. Akkas Formation (Silurian)
 7.5.2. Baluti Formation (Rhaetian)
 7.5.3. Adaiyah Formation (Liassic)
 7.5.4. Gotnia Formation (Upper Jurassic).
 7.5.5. Naokeleken Formation (Upper Jurassic)
 7.5.6. Ratawi Formation (Valanginian-Hauterivan).
 7.5.7. Zubair Formation (Valanginian-Barremian).
 7.5.9. Khasib Formation (11hronian).
 7.5.10. Shiranish Formation (Maastrichtian).
 7.5.11. Aaliji Formation (Paleocene-Lower Eocene)
 7.5.12. Dhiban Formation (Lower Miocene)
 7.5.13. Lower Fars Formation (Middle Miocene).
 7.5.14. Jawan Formation (Albian)
 7.5.15. Kifl Formation (Cenomanian)

Chapter 8: Source Rocks and Hydrocarbon Migration and Accumulations

8.1. Geochemical Evaluation of Hydrocarbon Source Rocks
8.2. Migration Pathways
8.3. Hydrodynamic Framework
8.4. Geodynamic Evolution to Hydrocarbon Accumulation
8.5. Thermal Maturation
8.6. Summary of the Main Source Rock Formations and their Maturation Stages
 - Khabour Formation (Middle-Uppermost Ordovician)
 - Akkas Formation (Silurian)
 - Harur Formation (Lower Carboniferous)
 - Chia Zairi Formation (Late Permian)
 - Kurra Chine Formation (Upper Triassic)
 - Jurassic Source Rocks Formations
 - Lower Cretaceous Source Rocks Formations
 - Shiranish Formation (Campanian-Maastrichtian)
8.7. Estimated Generated Hydrocarbons
8.8. Hydrocarbon Ages, Oil Characteristics and Distribution
 8.8.1. Tertiary Oil
 8.8.2. Cretaceous Oil
 8.8.3. Jurassic Oil
 8.8.4. Triassic Oil
 8.8.5. Paleozoic Oil and Gas
8.9. Traps and Trapping Mechanisms
Chapter 9: Hydrocarbon Potentials Plays

9.1. Main Hydrocarbon Potential Plays
 9.1.1. Paleozoic Clastic Play
 9.1.2. Triassic Carbonate play
 9.1.3. Jurassic Carbonate Play
 9.1.4. Lower Cretaceous Carbonate Plays
 9.1.5. Lower Cretaceous Sandstone Play
 9.1.6. Middle Cretaceous Sandstone Play
 9.1.7. Middle Cretaceous Carbonate Play
 9.1.8. Upper Cretaceous Carbonate Play
 9.1.9. Tertiary Carbonate Play

Chapter 10: Summary and Conclusions

10.1. Future Prospects
10.2. Hydrocarbon Habitats
 10.2.1. Reservoir Rock Units
 10.2.2. Seals
 10.2.3. Source Rock Units
 10.2.4. Traps
 10.2.5. Structures and Culminations
 10.2.6. Targets for Developments
 10.2.7. Appraised Undeveloped Fields
 10.2.8. Reserves
10.3. Oil Provinces Prospects

References
LIST OF FIGURES

CHAPTER 1: AN INTRODUCTORY OVERVIEW

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location map of Iraq showing main physiographic provinces and major cities.</td>
</tr>
<tr>
<td>1.2</td>
<td>Location of the main tectonic regions and paleo-highs in Iraq.</td>
</tr>
<tr>
<td>1.3</td>
<td>Simplified plate-tectonic evolution of Middle East region during the Mesozoic period. (A) Distribution of Middle East plates during Permo-Triassic. (B) Intraplate rifting and beginning of separation of Middle East during Late Triassic. (C) Opening of Neotethys (seafloor spreading) and closing Paleotethys (seafloor subduction) during Jurassic-Middle Cretaceous. (D) Closing of Neotethys (seafloor subduction), local obduction (Oman), intraplate rifting and separation of Arabia and India during Late Cretaceous-Paleocene (*Location of Baghdad).</td>
</tr>
<tr>
<td>1.4</td>
<td>Simplified lithostratigraphy and hydrocarbon habitat of Mesozoic-Cenozoic formations in northern Iraq.</td>
</tr>
<tr>
<td>1.5</td>
<td>Simplified lithostratigraphy and hydrocarbon habitat of Jurassic-Tertiary formations in central and southern Iraq.</td>
</tr>
<tr>
<td>1.6</td>
<td>Base map and location of control key wells, their names is listed in Table (1.1).</td>
</tr>
</tbody>
</table>

CHAPTER 2: TECTONIC EVOLUTION

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structural scheme of the Arabian Plate and its margin, showing tectonic positions of Iraq (Mesopotamian and Zagros).</td>
</tr>
<tr>
<td>2.2</td>
<td>Location map showing the main tectonic regions and target reservoirs.</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic crustal cross-section of the Arabian sedimentary province.</td>
</tr>
<tr>
<td>2.4</td>
<td>Lineament map from the Triassic to the Upper Cretaceous.</td>
</tr>
<tr>
<td>2.5</td>
<td>Lineament map from the Paleocene to Lower Miocene.</td>
</tr>
<tr>
<td>2.6</td>
<td>Lineament map from the Middle Miocene to the Pleistocene.</td>
</tr>
<tr>
<td>2.7</td>
<td>Plate tectonic reconstructions: maps of the Arabian Plate and surroundings. (Approximate location of Baghdad and Abu Dhabi showing as stars 1 and 2)</td>
</tr>
<tr>
<td>2.8</td>
<td>Sketch of plate boundaries in Iraq and adjacent areas.</td>
</tr>
<tr>
<td>2.9</td>
<td>Tectonic framework and location of main blocks and ridges and their ages and positions.</td>
</tr>
<tr>
<td>2.10</td>
<td>Generalised paleolatitude curve for Iraq centered on Baghdad. Angle of rotation of northern extremity of Iraq (Arro tip related to present day N-S axis through time).</td>
</tr>
</tbody>
</table>
| 2.11 | Location of depo-axes (A-C) in Iraq during the Paleozoic Intra-Cratic basins stage E-W stratigraphic cross-section of the Cambrian-Lower Permian sediments.
 (A) Depo-axis of the Cambro-Ordovician rocks.
 (B) Depo-axis of the Famennian-Lower Tournaisian rocks.
 (C) Depo-axis of the Upper Trounaisian-Autunian rocks. |
| 2.12 | Location of depo-axes (A-I) in Iraq during the Early Ortho geosynclinal stage. E-W stratigraphic cross-section of the Kungurian-Lower Tithonian rocks.
 (A) Depo-axis of the Kungurian-Kazanian rocks.
 (B) Depo-axis of the Tatarian-Ladinian rocks. |
(C) Depo-axis of the Carnian-Rhaetian rocks.
(D) Depo-axis of the Hettangian-Pliensbachian rocks.
(E) Depo-axis of the Toarcian-Lower Aalenian rocks.
(F) Depo-axis of the Upper Aalenian-Bathonian rocks.
(G) Depo-axis of the Callovian-Lower Tithonian rocks during the miogeosynclinal stage.
(H) Depo-axis of the Callovian-Lower Tithonian rocks during the eugeosynclinal stage.

Figure 2.13. Location of depo-axes (A-F) in Iraq during the Late Orthogeosynclinal stages. E-W cross-section of the Tithonian-Lower Maastrichtian rocks.
(A) Depo-axis of the Tithonian-Lower Valanginian rocks.
(B) Depo-axis of the Valanginian-Aptian rocks.
(C) Depo-axis of the Albian-Lower Cenomanian rocks during the miogeosynclinal stage.
(D) Depo-axis of the Albian-Lower Cenomanian rocks during the eugeosynclinal stage.
(E) Depo-axis of the Cenomanian-Lower Turonian rocks during the miogeosynclinal stage.
(F) Present depo-axis of the Middle Turonian-Lower Maastrichtian rocks during the miogeosynclinal stage.

Figure 2.14. Idiogeosynclinal location of depo-axes in Iraq during the Late Orthogeosynclinal, and exogeosynclinal stages. East-West stratigraphic cross-section across Iraq.
(A) Miogeosynclinal depo-axis of the Maastrichtian rocks.
(B) Epi eugeosynclinal depo-axes of the Maastrichtian rocks.
(C) Miogeosynclinal depo-axes of the Paleocene-Youpresian rocks.
(D) Epigeosynclinal depo-axes of the Lutetian-Priabonian rocks.
(E) Miogeosynclinal depo-axes of the Lutetian-Prabonian rocks.
(F) Epiugeosynclinal depo-axes of the Lutetian-Prabonian rocks.
(G) Depo-axis of the Oligocene rocks.
(H) Depo-axis of the Aquitaniaan rocks.
(I) Depo-axis of the Burdigarian rocks.
(J) Depo-axis of the Lower-Middle Miocene rocks.
(K) Depo-axis of the Upper Miocene-Pleistocene rocks.
(L) Present depo-axis of the Holocene sediments.

Figure 2.15. Schematized regional correction of Mesozoic-Cenozoic rock units in Iraq showing major unconformities and/or non-deposition.

Figure 2.16. Tectonic subdivisions and zonations of stable shelf, unstable shelf and geosynclinal areas of Iraq.

Figure 2.17. Transversal block and major transverse faults active during Mesozoic and Tertiary.

Figure 2.18. Map of the basement contour depth in kilometers.

Figure 2.19. Gravity Bouguer anomalies map. Contour interval 5 m.

Figure 2.20. Faults derived from gravity data in Iraq.

Figure 2.21. Negative local anomaly (in mgal) on Makhul structure that is located along the southwest margin of the Zagros folded zone.

Figure 2.22. Negative local anomaly (in mgal) that corresponds to anticline structures of salt tectonic origin in south Iraq.
Figure 2.23. The subsurface style zones in southern Iraq.

1. Precambrian basement and Infra-Cambrian salt tectonic zone (N-S trend).
2. Alpine over-thrusting fold zone, (NNW-SSE trend). No activity prior to Maastrichtian, present during the Late Eocene.
3. Alpine folded belt zone (NW-SE trend). No growth prior to Miocene.
4. Transitional zone between the Alpine and the basement fold zone (NNW-SSE trend). Low closures and no growth earlier than Eocene.
5. Basement block-zone (NW-SE, NE-SW, NNW-SSE trends), started as early as Late Tithonian.
7. Transitional zone between the basement block-folding zone and the Hāil-Rutbah Arch Zone (N-S trend).
8. The eastern flank of the Hāil-Rutbah Arch.
9. The crest of the Hāil-Rutbah Arch.

Figure 2.24. Salt tectonic areas of Iraq.

Figure 2.25. Cross section within the stable shelf of western Arabia starting from Aleppo in the NW and terminating at the Nukhaib Graben in Rutba Zone of western Iraq.

Figure 2.26. Profile between Risha in, NE Jordan to Naft Khana near the Iranian border.

Figure 2.27. Profile from the Risha in NE Jordan to the Mushorah area in north Iraq passing through the Rutba subzone, Jezira subzone and the foothill zone. Cretaceous troughs and grabens are clearly visible in this profile.

Figure 2.28. Cross section through central Iraq passing through the stable shelf, the foothill and high folded zones showing the deepest basement in Iraq in the Foothill Zone.

CHAPTER 3: SEDIMENTARY CYCLES AND THEIR DEPOSITIONAL SETTING

Figure 3.1. Approximate structural contour map (in meters) on top of the preserved Paleozoic sequence, Iraq.

Figure 3.2. Approximate total thickness (in meters) of the preserved Paleozoic sequence as the difference between the basement and top of Paleozoic sediments in Iraq inferred from geophysical measurement and deep bore holes.

Figure 3.3. Composite stratigraphic sequence of Paleozoic formations in Iraq.

Figure 3.4. Subcrop map below the ‘Caledonian’ unconformity. Raster represents area of subsequent erosion during the Late Carboniferous.

Figure 3.5. Isopach map of the Upper Devonian and Lower Carboniferous Kaista Formation.

Figure 3.6. Isopach map of the Lower Carboniferous Mississippian-Tournaisian Ora Formation in Iraq. The formation reached up to 350 m consist of marine shales and minor carbonates. Between Dahuk and Ora towards Syria the formation may become dominated by sandstone.
Figure 3.7. Isopach map of the Lower Carboniferous (Tournaisian) Harur Formation in west and northwest Iraq. The formation reached up to 166 m thick and consist of shallow-marine carbonates and clastics.

Figure 3.8. Hercynian subcrop map.

Figure 3.8. Structural contour map (in meters) on top of the preserved Triassic sequence, Iraq.

Figure 3.9. Isopach map of the Permian Chai Zairi Formation in western and central Iraq. The formation is absent in westernmost Iraq due to non-deposition and/or erosion. In central Iraq, the West Kifl-1 well penetrated a complete section and the formation has thickness of 502 m (1,647 ft.). The greatest thickness is attained in northernmost Iraq in the outcrop type section where it attains a thickness of more than 800 m (2,624 ft.). The wells Atshan-1, Jabal Kand-1 and Mityaha-1 occupied paleo-setting that was nearest to the Permian shore in Jordan and Syria.

Figure 3.10. Sedimentary facies of middle-Late Permian.

Figure 3.11. Approximate structural contour map (in meters) on top of the preserved Triassic sequence, Iraq.

Figure 3.12. Triassic formation correlation within Iraq.

Figure 3.13. Sedimentary facies of the Lower-Middle Triassic.

Figure 3.14. Total thickness map (in meters) of the Lower-Middle Triassic sequence, Iraq.

Figure 3.15. Approximate structural contour map (in meters) on top of Late Triassic sequence, Iraq.

Figure 3.16. Sedimentary facies of the Upper Triassic deposits.

Figure 3.17. Sequence stratigraphy of the Jurassic rock units in Iraq.

Figure 3.18. Sedimentary facies of the Liassic deposits.

Figure 3.19. Sedimentary facies of the Dogger deposits.

Figure 3.20. Approximate structural contour map (in meters) on top of the preserved Jurassic sequence, Iraq.

Figure 3.21. Thickness contour map (in meters) of the Jurassic sequence, Iraq.

Figure 3.22. Sedimentary facies of the Oxfordian to Kimmeridgian deposits.

Figure 3.23. Sequence stratigraphy of the Cretaceous rock units in the Mesopotamian and Western Desert of Iraq.

Figure 3.24. Sequence stratigraphy of the Cretaceous rock units in northern and southern Iraq.

Figure 3.25. Sedimentary facies of the Tithonian-Hauterivian deposits.

Figure 3.26. Sedimentary facies of the Barremian-Albian deposits.

Figure 3.27. Structural contour map (in meters) on top of Early Cretaceous sequence, Iraq.

Figure 3.28. Thickness contour map (in meters) of the Early Cretaceous sequence, Iraq.

Figure 3.29. Thickness contour map (in meters) of the Late Cretaceous (Cenomanian-Campanian) sequence, Iraq.

Figure 3.30. Sedimentary facies of the Middle Cretaceous (Cenomanian-Turonian) deposits.

Figure 3.31. Sedimentary facies of the Upper Cretaceous deposits.

Figure 3.32. Tectonostratigraphic chart of Permian-Tertiary successions in the Zagros suture zone of northern Iraq.

Figure 3.33. Tertiary formation correlations within Iraq.
Figure 3.34. Thickness contour map (in meters) of the Paleogene sequence, Iraq.
Figure 3.35. Structural contour map (in meters) on top of the Paleogene sequence, Iraq.
Figure 3.36. Sedimentary facies of the Paleocene deposits.
Figure 3.37. Sedimentary facies of the Middle-Upper Eocene deposits.
Figure 3.38. Sedimentary facies of the Oligocene-Lower Miocene deposits.
Figure 3.39. Thickness contour map (in meters) of Neogene sequence, Iraq.
Figure 3.40. Sedimentary facies of the Middle Miocene deposits.
Figure 3.41. Sedimentary facies of the Upper Miocene deposits.
Figure 3.42. Sedimentary facies of the Pliocene-Recent deposits.

CHAPTER 4: STRATIGRAPHICAL NOMENCLATURE OF PHANEROZOIC ROCK UNITS

Figure 4.1. Lithostratigraphy and log characteristics of the Khabour Formation at the well Akkas-1, western Iraq.
Figure 4.2. Lithostratigraphy and log characteristics the type section of the Silurian Akkas Formation, well Akkas-1.
Figure 4.3. Lithostratigraphy and log characteristics of the Late Devonian and Early Carboniferous Pirispiki, Kaista, Ora and Harur formations in Akkas-1 well.
Figure 4.4. Lithostratigraphy and log characteristics of the Early Carboniferous (Tournaisian Visean–Serphukovian) Harurand Raha Formation and Late Carboniferous-Permian Ga’ara Formation in Key Hole KH 5/1.
Figure 4.5. Lithostratigraphy and log characteristics of the Middle and Late Permian Chia Zairi Formation in well Jabal Kand-1. The formation is divided into three units with the upper Ch1 and lower Ch3 being predominantly limestone, while the middle Ch2 unit consist of alternating dolomites and clastics. The clastic unit below the Chia Zairi Formation is here shown as the Ga’ara Formation although it may be coeval with Chia Zairi carbonates elsewhere in the basin.
Figure 4.6. General distribution of the Middle-Late Permian rock units.
Figure 4.7. Lithostratigraphy and log characteristics of the Triassic formations: Mirga Mir, Beduh, Geli Khana, Kurra Chine, Well Atshan-1.
Figure 4.8. Early-Mid Triassic rock units.
Figure 4.9. General distribution of the Late Triassic rock units.
Figure 4.10. Lithostratigraphy and Electric Logs of the Baluti, Butmah, Adaiyah, Mus and Alan formations, Butmah-2 well.
Figure 4.11. General distribution of the Early Jurassic rocks units.
Figure 4.12. General distribution of the Middle Jurassic rock units.
Figure 4.13. Lithostratigraphy and electric logs of the Sargelu and Najmah formations, Najmah-2 well.
Figure 4.14. General distribution of the Late Jurassic (Oxfordian) rock units.
Figure 4.15. General distribution of the Late Jurassic (Kimmeridgian-Early Tithonian) rock units.
Figure 4.16. Tithonian-Early Berriasian rock units.
Figure 4.17. Lithostratigraphy and electric logs of the Gotnia, Zangura, Garagu, Sarmord, Jawan and Qamchuqa formations, Makhul-2 well.
Figure 4.18. Lithostratigraphy and electric logs of the Yamama and Ratawi formations, Rachi-1 well.
Figure 4.19. General distribution of the Valanginian rock units.
Figure 4.20. Lithostratigraphy and electric logs of the Balambo Formation, Pulkhana-5 well.
Figure 4.21. General distribution of the Barremian-Early Aptian rock units.
Figure 4.22. Lithologic component of the Qamchuqa Formation in its locality, Qamchuqa village, northern Iraq.
Figure 4.23. General distribution of the Aptian rock units.
Figure 4.24. Lithostratigraphy and log characteristics of the Nahr Umr, Maaddud, Ahmadi, Rumaila and Mishrif formations, Zubair-24 well.
Figure 4.25. General distribution of the Albian rock units.
Figure 4.26. Lithostratigraphy and electric logs of the Sarmord, Qamchuqa, Dokan, and Kometan formations in well Chemchemal-2.
Figure 4.27. General distribution of the Lower Cenomanian rock units.
Figure 4.28. General distribution of the Late Turonian rock units.
Figure 4.29. General distribution of the Upper Cenomanian-Early Turonian rock units.
Figure 4.30. Lithostratigraphy and electric logs of Khasib, Tanuma, Sadi, Hartha, Qurna and Tayarat formations, Tuba-1 well.
Figure 4.31. Turonian-Early Campanian rock units.
Figure 4.32. General distribution of the Late Campanian-Early Maastrichtian rock units.
Figure 4.33. General distribution of the Late Maastrichtian rock units.
Figure 4.34. Lithostratigraphy and electric logs of the Shiranish formations, Gusair-1 well.
Figure 4.35. Stratigraphic correlation of Paleocene-Eocene sediments in south and southeast and western Iraq.
Figure 4.36. General distribution of the Paleocene rock units.
Figure 4.37. General distribution of the Early Eocene rock units.
Figure 4.38. General distribution of the Middle-Late Eocene rock units.
Figure 4.39. Lithostratigraphy and electric logs of the Aaliji Formation, Butmah-7 well.
Figure 4.40. Lithostratigraphy of Sinjar-Khurmala and Pila Spi formations, Chemchemal-2 well.
Figure 4.41. Lithostratigraphy and electric logs of Jaddala and Avanah formations, Ain Zalah-22 well.
Figure 4.42. General distribution of the Oligocene rock units.
Figure 4.43. Lithostratigraphy and electric logs of Kirkuk Group, Ain Zalah-16 well.
Figure 4.44. General distribution of the Aquitanian-Early Miocene rock units.
Figure 4.45. General distribution of the late-Early to early-Middle Miocene rock units.
Figure 4.46. Lithostratigraphy of Lower and Upper Fars Formations, Bai Hassan-13 well.
Figure 4.47. General distribution of the Middle Miocene rock units.
Figure 4.48. Late Miocene-Pliocene rock units.

CHAPTER 5: SEQUENCE STRATIGRAPHY AND MAXIMUM FLOODING SURFACES

Figure 5.1. Paleozoic litho- and sequence stratigraphy of Iraq.
Figure 5.2. Composite stratigraphy and schematic well log response for the Triassic and Jurassic succession of Butmah Field, northern Iraq.
Figure 5.3. Stratigraphic sequence of Late Permian-Liassic Formation.
Figure 5.4. Stratigraphic sequence of Late Toarcian-Early Tithonian formations.
Figure 5.5. Stratigraphic sequence of Cretaceous formations.
Figure 5.6. Stratigraphic sequence of Late Turonian-Danian formations.
Figure 5.7. Stratigraphic sequence of Middle Paleocene-Eocene formations.
Figure 5.8. Stratigraphic sequence of Eocene-Recent formations.

CHAPTER 6: PETROLEUM EXPLORATION, LEGISLATION AND OILFIELDS SUMMARY
Figure 6.1. Hydrocarbon seepages and seepage-related activities.
Figure 6.2. Oil production history showing the dates of fields and the major events affected the oil industry in Iraq.
Figure 6.3. Oilfields, pipelines and refineries in Iraq (Note that at present all pipelines outside Iraq is closed). Crude production and reserves.

CHAPTER 7: RESERVOIRS AND SEALS: CHARACTERISTICS AND TYPES
Figure 7.1. Lithostratigraphy and log characteristics of the Ordovician-Khabour Formation at the well Akkas-1, western Iraq.
Figure 7.2. Correlation diagram of some exploration wells with locations of the potential reservoirs and source rocks of the Western Desert.
Figure 7.3. Lithostratigraphy and potassium, thorium and uranium logs in the Akkas Formation at well Akkas-1. The high content of radioactive elements is particularly evident in the hot shales in the lower Hoseiba Member.
Figure 7.4. Correlation of Permian Chia Zairi Formation showing sedimentary facies and thickness variations and logs characteristics.
Figure 7.5. Log general lithology and test results in Butmah and Kurra Chine formations folded belts, Zagros Basin, Iraq.
Figure 7.6. Columnar section of the Kiif-3, Metiah-1 and Butmah-15 wells showing the general north-to-south lithology changes in the Kurra Chine Formation.
Figure 7.7. Lithology and hydrocarbon occurrences in the Najmah and Gotnia Formations.
Figure 7.8. Facies and thickness variations of the Najmah Formation in some wells in the Mesopotamian Basin.
Figure 7.9. Cretaceous stratigraphy and their hydrocarbon habitats (reservoir, source rocks and seals) in Iraq.
Figure 7.10. Palynofacies map and block diagram for the Sulaiy Formation showing the location of the borehole sections in relatively deep-water to basinal environments.
Figure 7.11. Log and lithological characteristics of the Yamama Formation in Rumaila field.
Figure 7.12. Log characteristics and sedimentary facies distribution in Yamama Formation at well-12 in West Qurna Field.
Figure 7.13. Facies map of the Yamama Formation in Southern Iraq.
Figure 7.14. Sedimentological model of the Yamama Formation in Southern Iraq.
Figure 7.15. Isopach map of the Ratawi Formation in Southern Iraq.
Figure 7.16. Stratigraphic cross-section showing relationship of source, reservoir and cap formations (Tithonian to Aptian).
Figure 7.17. Petrophysical logs and characteristics and cross interpretation (diagenesis, lithology and depositional interpretation) from the Shuaiba and Zubair formations, Mesopotamian Basin, Iraq.

Figure 7.18. Three dimensional model of the river-dominated delta in the Zubair Formation of southern Iraq.

Figure 7.19. Zubair Formation subdivision showing the five members, Rumaila Field.

Figure 7.20. Detailed subdivision and logs interpretation of Upper members of the Zubair Formation in Rumaila Field.

Figure 7.21. Longitudinal dimension which is almost perpendicular to shoreline of Upper Sandstone Member using electrical logs and general lithology in Rumaila Field.

Figure 7.22. Isopach of the Zubair Formation in southern Iraq.

Figure 7.23. SW-NE section showing the Barremian-Albian sedimentary sequence evolution.

Figure 7.24. A typical cyclothem from the Zubair Formation.

Figure 7.25. Major sequence of the Cretaceous sediments from a typical well in Kirkuk Field, northern Iraq D1, D2 and D3 the first type of discontinuity, represents and abrupt change in sedimentation from shallow shelf carbonates to deeper shelf marls, d1 D2 and d3 the first type of discontinuity is local and represented by variations of sedimentation within the internal shelf.

Figure 7.26. Diagrammatic section through the Nahr Umr Formation at it’s type locality, Well Nahr Umr-2.

Figure 7.27. Stratigraphic correlation diagram of the Mauddud Formation in southeast Iraq.

Figure 7.28. The Upper Albian-Coniacian formations and main lithologies of the Mesopotamian Basin as compared to Haq et al. (1987) cycles.

Figure 7.29. SW-NE section presenting the sequence evolution of Cenomanian sedimentary facies.

Figure 7.30. Description of the Mishrif Formation based on core and well log West Qurna-1.

Figure 7.31. Two different-scale sedimentary cycles of the Mishrif Formation in the well Amarah-1.

Figure 7.32. Lithostratigraphy of the Mishrif Formation at well Rafidain-1 (formerly Abu Amoud) oilfield, southern Iraq. Well logs are spontaneous potential (SP), gamma-ray (GR) and sonic (S). Two major regressive sequences are identified, each consisting of small-scale sequences, and are divided by an unconformity.

Figure 7.33. Schematic east-west cross-section showing setting of the Mishrif Formation in the Mesopotamia Basin during the Cenomanian-Early Turonian. The general setting is a ramped carbonate platform on which various depositional subenvironments were developed.

Figure 7.34. Isopach map of the Khasib Formation in the Mesopotamian Basin. The contour interval is 25 m.

Figure 7.35. Sedimentary cycles of the Turonian-Lower Campanian sequence in the Mesopotamian Basin.

Figure 7.36. Distribution of the depositional microfacies of the Khasib-Tanuma-Sa’di sequence studies in well Muhainya-1.
Figure 7.37. Lithostratigraphic correlation of the three formations studied showing their distribution along NW-SE traverse parallel to the depositional axis of the Mesopotamian Basin. The datum is top of the underlying Mishrif Formation and overlying Hartha Formation.

Figure 7.38. Lithostratigraphic correlation of the Khasib, Tanuma, and Sa’di formations in an almost E-W traverse perpendicular to the depositional axis direction, based on electrofacies analysis. The datum is top of the underlying Mishrif or Kifl Formation.

Figure 7.39. Schematic diagram showing the depositional subenvironments and their facies during the deposition of the Khasib formations in the Mesopotamian Basin.

Figure 7.40. Isopach map of the Tanuma Formation in the Mesopotamian Basin. The contour interval is 25 m.

Figure 7.41. Schematic diagram showing the depositional subenvironments and their facies during the deposition of the Tanuma Formation in the Mesopotamian Basin.

Figure 7.42. Isopach map of the Sa’di Formation in the Mesopotamian Basin. The contour interval is 50 m.

Figure 7.43. Schematic diagram showing the depositional environments and their facies during the deposition of the Sa’adi Formation in the Mesopotamian Basin.

Figure 7.44. Diagrammatical section through the Hartha Formation at its type locality, Well Zubair-3.

Figure 7.45. Electrofacies characteristics, environmental distribution and stratigraphy of the Hartha Formation, example from Ahdab-1 well.

Figure 7.46. Block diagram showing the distribution of the depositional environment of the Upper Cretaceous Hartha Formation and its equivalents.

Figure 7.47. Schematic cross section showing the main facies in the “main limestone” of the Kirkuk Field.

Figure 7.48. Idelaized vertical sequence-model for the Upper Miocene fluvial-tidal complex of the Upper Fars Formation – Namrin Mountain.

CHAPTER 8: SOURCE ROCKS AND HYDROCARBON MIGRATION AND ACCUMULATION

Figure 8.1. Geochemical log of Sargelu-Naokelekan-Gotnia formations in well Qura Chuqa-1 showing source bed potential, maturity and hydrocarbon indications.

Figure 8.2. Geochemical log of Balambo (Late Cretaceous) in well Jambur 18 showing source bed potential, maturity and hydrocarbon indications.

Figure 8.3. Geochemical log of Balambo (Late Cretaceous) in well Pulkhana-5 showing source bed potential, maturity and hydrocarbon indications.

Figure 8.4. Geochemical log of Balambo-Kometan formation in well Injana-5 showing source bed potential, maturity and hydrocarbon indications.

Figure 8.5. Geochemical log of Barsarin and Chia Gara formation in well Kirkuk-109 showing source bed potential, maturity and hydrocarbon indications.

Figure 8.6. Van Krevelen diagram showing types and evolutionary stages of kerogens from wells Kirkuk-109, Pulkhana-5 and Qara Dagh-1.

Figure 8.7. Van Krevelen diagram showing types and evolutionary stages of kerogens from surface and subsurface of northern Iraq.
Figure 8.8. Type and evolutionary stages of kerogen from the Upper Jurassic Sargelu-Naokelekan-Gotnia formations in well Qara Dagha-1.

Figure 8.9. Type and evolutionary stage of kerogen from the Upper Jurassic Cretaceous source rocks in northern Iraq from wells Taq Taq and Jabal Kand.

Figure 8.10. Petroleum potential vs TOC in formations from outcrop and wells Jabal Kand-1 and Taq Taq-1.

Figure 8.11. Relation between Vertrinite Reflectance (R_o) and depth in wells Pulkhana-5, Kirkuk-109 and Qara Chauq-1.

Figure 8.12. Capillary gas chromatograms of C^{15+} n-alkaline from some source rock samples representing source rock, from Northern Iraq.

Figure 8.13. Relationship between capillary gas chromatograms of C^{15+} n-alakaline from some source rocks and oil samples.

Figure 8.14. Time-temperature maturation model for the Aalenian-Holocene in Kirkuk oil fields.

Figure 8.15. Different stages of the formation, maturation, trapping and preservation of hydrocarbon in Qamchuqa reservoir of the study Kirkuk area. Source rocks are in Middle and Upper Jurassic formations (Sargelu and Naokelekan) and in Lower Cretaceous formations (Chia Gara, Lower Sarmord, Garagu, and Middle Sarmord).

Figure 8.16. Geochemical log of the Khobour-Akkas formations in well Akkas-1.

Figure 8.17. Geochemical log of the Khobour-Akkas, Ora, Kiasta, and Harur formations in Well Kheleisia-1.

Figure 8.18. Geochemical log of the Paleozoic Akkas, Ora, Kiasta, Harur and Ga`ara formations in Well KH5/1.

Figure 8.19. Geochemical log of Ga`ara and Chia Zairi formations in Well West Kifl-1.

Figure 8.20. Structural cross section and hydrocarbon maturity levels for selected boreholes from west, central and southern Iraq.

Figure 8.21. Correlation of approximate maturity levels in wells from western and central Iraq.

Figure 8.22. Diagrammatic cross section across the Mesopotamian zone in Southern Iraq showing facies changes and hydrocarbon sources, traps and possible migration paths.

Figure 8.23. Diagramatic cross section across the stable shelf in western and central Iraq showing facies distribution, source and reservoir levels and the possible hydrocarbon migration paths.

Figure 8.24. Oil kitchens and migration paths in Northern Iraq.

Figure 8.25. Geographic extend of modeled oil generation and expulsion in Middle Jurassic source rocks at present day.

Figure 8.26. Present day model migration pathways on top Middle Jurassic surface. TR contour for End of Kerogen-gas generation (TR 7/0.95) and onset of oil-gas cracking (TR7/0.01) are shown.

Figure 8.27. API-Sulphur plot of oil contained in different reservoir formations ranging in age from the Silurian to Miocene.

Figure 8.28. API-depth plot of oils contained in reservoir formations (Lower Paleozoic-Miocene age) and their locations.

Figure 8.29. Burial curve of datum at the top of Sargelu Formation for well Ibrahim-1, geothermal gradients = 1.2 F/100. OGT = oil generating threshold.
Figure 8.30. Burial curve of datum at the top of Sargelu Formation at Kirkuk, geothermal gradients = 1.2 F/100. OGT = Oil generating threshold. POG = Peak generating. EOG = End oil generating.

Figure 8.31. Burial curve of Datum at the top of Sargelu Formation for well Samawa-1, geothermal gradients = 1.2 F/100. OGT = Oil generating threshold. POG = Peak oil generating. EOG = End oil generating.

Figure 8.32. Burial curve of datum at the top of Sargelu Formation for well Ubaid-1, geothermal gradients = 1.2 F/100. OGT = Oil generating threshold. POG = Peak oil generating. EOG = End oil generating.

Figure 8.33. Burial curve of datum at the top of Triassic for Butmah-2 well. Geothermal gradient = 1.3 F/100. OGT = Oil generating threshold. POG = Peak oil generating.

Figure 8.34. Burial curve of datum at the top of Sargelu Formation for Falluja-1 well. Geothermal gradient = 1.3 F/100. OGT = Oil generating threshold.

Figure 8.35. The timing oil generation in the northern Arabian Gulf Basin.

Figure 8.36. Geothermal gradient and time-temperature maturation model of geologic sequence of Tuba-1 well, Iraq.

Figure 8.37. Geothermal gradient and time-temperature maturation model of geologic sequence of Safawi-1 well, Iraq.

Figure 8.38. Geothermal gradient and time-temperature maturation model of geologic sequence of Dujaila-1 well, Iraq.

Figure 8.39. Hydrocarbon maturity at the top of the Early Cretaceous sequence.

Figure 8.40. Hydrocarbon maturity on top of Sulaiy (Makhul) Formation (Lower Cretaceous).

Figure 8.41. Hydrocarbon maturity at the top of the Jurassic Sequence.

Figure 8.42. Hydrocarbon maturity at the top of the Middle Jurassic Sequence.

Figure 8.43. Hydrocarbon maturity of the Middle-Upper Jurassic Sargelu-Gotnia Formations.

Figure 8.44. Hydrocarbon maturity at the top of the Triassic Sequence.

Figure 8.45. Hydrocarbon maturity of the Late Triassic Kurra Chine/Mulussa Formation.

Figure 8.46. Hydrocarbon maturity of the Akkas Formation at the base of the Silurian sequence.

Figure 8.47. Hydrocarbon maturity at the top of the Paleozoic sequence.

Figure 8.48. North-south structural cross section in Western Desert showing TTI (Time-Temperature Maturations) and hydrocarbon occurrences.

Figure 8.49. East-west structural cross section in Western Desert showing TTI (Time-temperature maturations) and hydrocarbon occurrences.

Figure 8.50. Modeled thermal maturity of Middle-Jurassic source rocks at present day.

Figure 8.51. Oil and Kerogen-gas formation and thermal curves depicting timing and temperature of major petroleum-generations events, and extent of petroleum generation at Zubair Field.

Figure 8.52. Oil and Kerogen-gas formation and thermal curves depicting timing and temperature of major petroleum-generations events, and extent of petroleum generation at Khashim Al Ahmar Field.

Figure 8.53. Oil and Kerogen-gas formation and thermal curves depicting timing and temperature of major petroleum-generations events, and extent of petroleum generation at Kirkuk Field (Baba Dome).
Figure 8.54. Burial-thermal history of Jurassic source rocks in Khashim Al Ahmar Field.
Figure 8.55. Burial-thermal history of Jurassic source rocks in Zubair Field.
Figure 8.56. Burial-thermal history of Jurassic source rocks in Kirkuk Field (Baba Dome).
Figure 8.57. Correlation diagram of deep Paleozoic wells in Western Desert showing the potential source rocks in the Khabour and Akkas formations.
Figure 8.58. Scheme of hydrocarbon generation potential predicted from stratigraphical variations in kerogen types. Paleoenvironments, Maturation, Assessments and total organic carbon (TOC) in Khabour Formation of well Akkas-1. Abbreviation are OM = organic matter, TAI = thermal alteration index, VR_o = vitrinite reflectance value.
Figure 8.59. Scheme of hydrocarbon generation potential of Khabur Formation at well Khleisia-1.
Figure 8.60. Scheme of hydrocarbon generation potential of Akkas Formation at well Akkas-1.
Figure 8.61. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Silurian Akkas Formation, “Hot Shale” source rock in Iraq.
Figure 8.62. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Lower Carboniferous Harur Formation source rock in Iraq.
Figure 8.63. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Upper Triassic Kurra Chine Formation source rock in Iraq.

Figure 8.64. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Middle Jurassic Sargelu and Naokelekan formations source rocks in Iraq.
Figure 8.65. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Lower Cretaceous Lower Balambo and Ratawi formations source rocks in Iraq.
Figure 8.66. Vitrinite Reflectance (Ro) and maturity stages of hydrocarbons of the Upper Cretaceous Shiranish Formation source rock in Iraq.
Figure 8.67. Approximate hydrocarbon distribution in Iraq.
Figure 8.68. Model of the burial history of the Akkas-1 well indicates that basal Silurian “hot” shale source rock has remained in the oil generation window since the Late Paleozoic.

CHAPTER 9: HYDROCARBON POTENTIALS PLAYS
Figure 9.1. Structural delineation based on Bouguer-derived anomalies and seismic anomalies.
Figure 9.2. Oil kitchen and migration paths in northern Iraq.
Figure 9.3. Diagrammatic cross section across the Mesopotamian zone in southern Iraq showing facies changes and hydrocarbon sources, traps and possible migration paths.
Figure 9.4. Paleozoic prospective regions.
Figure 9.5. Ordovician-Silurian hydrocarbon prospect in Western Desert showing residual anomalies (black), and faults. Exploration oil well (●) and water well (+).
Figure 9.6. Late Permian hydrocarbon prospects. Showing anticlinal anomalies (black), and faults. Exploration oil well (●) and water well (+).
Figure 9.7. Triassic-Early Jurassic hydrocarbon prospects: Anticlinal anomalies (black), Oil (diamond) and oil shows (Triangle). Exploration oil well (●) and water well (+).

Figure 9.8. Middle-Late Jurassic hydrocarbon prospects: Anticlinal anomalies (black) and Oil (diamond). Exploration oil well (●) and water well (+).

Figure 9.9. Early Cretaceous Yamama Carbonate Formation hydrocarbon prospects: Anticlinal anomalies (black), and Oil (diamond). Exploration oil well (●) and water well (+).

Figure 9.10. Early Cretaceous Zubair Sandstone Formation hydrocarbon prospects: Anticlinal anomalies (black), and Oil (diamond). Exploration oil well (●) and water well (+).

Figure 9.11. Miocene Carbonates hydrocarbon prospects: Anticlinal anomalies (black). Exploration oil well (●) and water well (+).

Figure 9.12. Oligocene Carbonates hydrocarbon prospects: Anticlinal anomalies (black), and Oil (diamond). Exploration oil well (●) and water well (+).

Chapter 10: Summary and Conclusions

Figure 10.1. Oilfields, pipelines and refineries in Iraq.

Figure 10.2. Jurassic-Cretaceous and Tertiary schematic stratigraphic section showing the general distributions of source rocks, reservoirs and seals in the Mesopotamian Basin, south and central Iraq.

Figure 10.3. Mesozoic-Tertiary schematic stratigraphic section showing the general distributions of source rocks, reservoirs and seals in the Zagros Basin, north Iraq.

Figure 10.4. Perspective areas based on geophysical data.

Figure 10.5. Appraisal fields in Iraq.
LIST OF TABLES

CHAPTER 1: INTRODUCTORY OVERVIEW
1.1. Names of the key wells used in isopach and other maps.
1.2. List of oil and gas fields.

CHAPTER 2: TECTONIC EVOLUTION
2.1. Stages of tectonics, types and rates of sedimentation and their depo-axes in Iraq.
2.2. Tectonic Development of Stable Shelf Area, Iraq.
2.3. Tectonic Development of Unstable Shelf Area, Iraq.
2.4. Tectonic Development in the Geosynclinal Areas of north-northeast Iraq.

CHAPTER 4: STRATIGRAPHICAL NOMENCLATURE OF PHANEROZOIC ROCK UNITS

CHAPTER 5: SEQUENCE STRATIGRAPHY AND MAXIMUM FLOODING SURFACES
5.1. Phanerozoic Sequence Stratigraphy.

CHAPTER 6: PETROLEUM EXPLORATION, LEGISLATION AND OILFIELDS SUMMARY
6.1. Iraq oil fields: Awarded contracts and memoranda of understanding.
6.2. History of exploration activities.
6.3. Historical record of petroleum exploration wells and their results, Iraq.
6.4. Crude production and reserves.
6.5. Major Producing Fields.
6.7. Marginal Fields.
6.8. Optimum field rates and well potentials in MBOPD (1000 BOPD).
6.9. Reservoir engineering test in Abu Amud Field.
6.10. Reservoir engineering test in Abu Amud East Field.
6.11. Reservoir engineering test in Dujaila Field.
6.12. Reservoir engineering test in Halfayah Field.
6.13. Reservoir engineering test in Huwaiza Field.
6.15. Reservoir engineering test in Nasiriya Field.
6.16. Reservoir engineering test in Rachi Field.
6.17. Reservoir engineering test in Ratawi Field.
6.18. Reservoir engineering test in Zubair Field.

CHAPTER 7: SOURCE ROCKS AND HYDROCARBON MIGRATION AND ACCUMULATION
7.1. Main reservoirs: their lithological and petrophysical characteristics, ages and occurrences in different fields and discoveries.
7.2. Oil and gas shows of some non-commercial or marginally commercial formations.
7.3. Oil and gas shows from the Kurra Chine Formation.
7.4. Oil and gas shows from the Butmah Formation.
7.5. Oil and gas shows from the Adaiyah Formation.
7.6. Oil and gas shows from the Mus Formation.
7.7. Oil and gas shows from the Alan Formation.
7.8. Oil and gas shows from the Sargelu Formation.
7.9. Oil and gas shows from the Gotnia Formation.
7.10. Oil and gas shows from the Najmah Formation.
7.11. Oil and gas shows from the Sulaiy Formation.
7.12. Production test results from Yamama Formation.
7.13. Oil and gas shows from the Yamama Formation.
7.14. Oil and gas shows from the Chia Gara Formation.
7.15. Oil and gas shows from the Ratawi Formation.
7.16. Average porosity (%) of the Zubair Formation in some fields.
7.17. Oil and gas shows from the Zubair Formation.
7.18. Oil and gas shows from the Garagu Formation.
7.19. Oil shows from the Sarmord Formation.
7.20. Oil shows from the Shuaiba Formation.
7.21. Oil shows from the Lower Qamchuqa Formation.
7.22. Oil shows from the Nahr Umr Formation.
7.23. Oil and gas shows from the Jawan Formation.
7.24. Oil shows from the Mauddud Formation.
7.25. Oil shows from the Ahmadi Formation.
7.26. Oil shows from the Rumaila Formation.
7.27. Average porosity (%) of the Mishrif Formation in some fields.
7.28. Oil and gas shows from the Mishrif Formation.
7.29. Oil and gas shows from the Sadi Formation.
7.30. Oil and gas shows from the Hartha Formation.
7.31. Oil shows from the Shiranish Formation.
7.32. Oil shows from the Aaliji Formation.
7.33. Oil and gas shows from the Jaddala Formation.
7.34. Oil and gas shows from the Lower Fars Formation.
7.35. Oil and gas shows from the Dibdibba Formation.

CHAPTER 8: SOURCE ROCKS AND HYDROCARBON MIGRATIONS AND ACCUMULATIONS

8.1. Results of vanadium and nickel concentrations in oil from the Iraqi oil fields.
8.2. Geochemical analysis showing Contents of bromine, vanadium and nickel in oils from some Iraqi oil fields.
8.3. Average range of total TOC, petroleum potential and production index from some wells in northern Iraq.
8.4. Geochemical results from Jurassic formations in Kirkuk-109 well, Iraq.
8.5. Geochemical results from Balambo Formation in Pulkahna-5 well, Iraq.
8.6. Main pyrolysis analysis used in source rock evaluation.
8.7. Maturation characterization and kerogen analysis.
8.9. Comparative influence of subsidence on the evolution of the basal Cretaceous source-rocks in Iraq.
8.10. Calculation of present TTI values of geological model in well Tuba-1
8.11. Calculation of present TTI values of geological model in well Safawi-1.
8.12. Calculation of present TTI values of geological model in well Dujaila-1.
8.13. Iraq’s recoverable oil reserves.
8.14. Amount of oil and gas generated by the various source levels.

CHAPTER 9: HYDROCARBON POTENTIALS PLAYS

9.1. Iraq oil and gas fields and discoveries: their main reservoirs, approximate depth (m) and oil gravity.

CHAPTER 10: SUMMARY AND CONCLUSIONS

10.1. Iraq’s appraised undeveloped fields.
10.2. Iraq’s Upstream Oil, Gas Industry Reserves Base.